# 204. Count Primes

Reference: LeetCode

Difficulty: Easy

Nice Video: Finding Prime numbers - Sieve of Eratosthenes

## Problem

Count the number of prime numbers

`less than`

a non-negative number`n`

.

**Example:**

1 | Input: 10 |

## Analysis

**Methods:**

- Brute-Force
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17public int countPrimes(int n) { // < n

if (n <= 2) return 0; // 0, 1 are not primes

int count = 0;

for (int i = 2; i < n; ++i) {

if (isPrime(i)) {

count += 1;

}

}

return count;

}

private boolean isPrime(int num) { // O(N)

if (num <= 1) return false;

for (int i = 2; i * i <= num; ++i) {

if (num % i == 0) return false;

}

return true;

}

**Time:** $O(N^2)$

**Space:** $O(1)$

- Using Square Root
- If
`n`

is not prime,`n = a x b, a <= b`

=>`a <= sqrt(n)`

. **Note:**- Use
`i * i <= num`

rather than`i <= Math.sqrt(num)`

, since the former one is faster. - Use
`i * i <= num`

instead of`i * i < num`

, the latter one is incorrect.1

2

3

4

5

6

7private boolean isPrime(int num) { // O(sqrt(N))

if (num <= 1) return false;

for (int i = 2; i * i <= num; ++i) {

if (num % i == 0) return false;

}

return true;

}

- Use

- If

**Time:** $O(N\sqrt{N}) = O(N^{1.5})$

**Space:** $O(1)$

- Sieve of Eratosthenes
- The basic idea is to remove primes’ multiples till $n - 1$.
**Some Optimizations:**- We don’t need to process potential primes larger than $\sqrt{n}$, since those non-prime numbers which are larger than $\sqrt{n}$ have already been struck off by the multiples of the primes less than or equal to $\sqrt{n}$.
- Each multiple
`j`

of a prime`i`

can start from`i * i`

since the smaller multiples have been struck off by other smaller primes.1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24public int countPrimes(int n) { // O(N loglogN)

if (n <= 2) { // 0 and 1 are not primes

return 0;

}

boolean[] isPrime = new boolean[n];

for (int i = 2; i < n; ++i) isPrime[i] = true; // Init all as primes

// Loop's ending condition is i * i < n instead of i < sqrt(n)

// to avoid repeatedly calling an expensive function sqrt().

// Sieve

for (int i = 2; i * i < n; ++i) { // for potential prime multiples

if (isPrime[i] == false) continue;

for (int j = i * i; j < n; j += i) { // upper bound is < n, because n is not included

isPrime[j] = false;

}

}

// count

int count = 0;

for (int i = 2; i < n; ++i) {

if (isPrime[i]) count += 1;

}

return count;

}

**Time:** $\frac{N}{2} + \frac{N}{3} + \frac{N}{5} + \ldots = O(N\log{\log{N}}) \sim O(N)$

**Space:** $O(N)$

Sieve of Eratosthenes: algorithm steps for primes below 121. “Sieve of Eratosthenes Animation” by SKopp is licensed under CC BY 2.0.

Comment